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1. Introduction and the distributed test 

architecture 
 
Protocol testing is an important phase for 
ensuring the quality of communication 
networks; especially,  testing distributed 
systems is an interesting issue in protocol 
engineering [14, 1, 18]. 
 
ISO (International Standardization 
Organization) developed the ISO distributed test 
architecture for testing layered protocols [10] 
(see Figure 1).  Furthermore, a general 
distributed test architecture where the  IUT 
(implementation under test)  contains several 
distributed ports has been studied in [14];  it is 
used for testing distributed systems, based on 
the Open Distributing Processing (ODP) Basic 
Reference Model (BRM) (see Figure 2).  In this 
architecture, the  IUT contains several ports 
(i.e., points of control and observation), the 
testers cannot  communicate or synchronize 
with one another unless they communicate 
through the IUT; and no global clock is 
available in the system. This architecture  could 
model a test architecture of a communication 
network with n accessing nodes, where the 
testers reside in these nodes. When n=2, this 
general distributed test architecture reduces to 

the ISO distributed test architecture.  We 
develop in the paper a test selection method 
with respect to this general distributed test 
architecture. 
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   Figure 1. ISO distributed test architecture 
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Figure 2. A general distributed test architecture   
 
Usually, in the so-called local test architecture 
developed by ISO,  the specifications of 
communication protocols are first abstracted 
into state machines [12], then test cases are 
generated from the resulting machines. A 
number of methods have been developed to 
generate test sequences for finite state machines 
(FSMs) [6, 16, 5, 17, 15]. However, they are not 
directly applicable to the distributed test 
architecture, because of the synchronization 
problem  (as defined in Section 2) between 
distributed testers.  
 
In the distributed test architecture, testing is 
relatively difficult because certain problems of 
synchronization between the testers may arise 
during the application of test sequences [18].  
To solve this problem, an approach of test 
generation has been developed in [18] by 
modifying the existing test generation methods 
for FSMs such as the transition tour [15], the 
DS-method [11], and the W-method [5], using a 
concept of so-called synchronizable test 
sequences. Later on, further work has been done 
to either study the computation complexity of 
generating synchronizable test sequences [4, 2], 
or to propose some modification to that concept 
[9, 4].   
 
However, these methods are all for the ISO 
distributed test architecture where there are only 

two ports, not for the general distributed test 
architecture where n2.  Furthermore, none of 
these studies addressed the issue of the fault 
coverage provided by their methods. 
 
We present in Section 2 an approach to 
generating test sequences for FSMs with n 
distributed ports (np-FSMs) where n2,  which 
is a generalized version of the approach given in  
[18].   We also explore in Section 3 the issue of  
fault coverage in the distributed test 
architecture.  In Section 4 we discuss the 
application of our method to generating test 
sequences for a so-called quorum-based 
protocol.  
 
 
2. An outline of a test generation method 
 
Under the architecture given in Figure 2, the 
testers are distributed over several sites, and 
they are only synchronized through the 
interactions with the implementation. In this 
situation, considering two consecutive 
transitions t1 and t2 of a given np-FSM I (n2), 
one of the testers  is said to face a 
synchronization problem if this tester did not 
take part in the first transition and if the second 
transition requires that it sends a message to I.    
 
We now generalize the concept of 
synchronizable test sequences given in [18] to 
the case of np-FSMs, n2, handling the 
synchronization problem of general np-FSMs.  
Given a np-FSM I with the ports 1, 2, ..., n, we 
require the following concepts for the ease of 
presentation.   
 
DEFINITION Interaction ports (IP) of a given 
transition   [pi, PO]:   
Let pi�{1, 2, ..., n} and PO⁄{1,2, ..., n} (n is the 
number of ports).  [pi, PO] is said to be an 
interaction port  (IP) of a given transition t if t 
receives an input from the port pi  and sends to 
each port in PO  an output (if PO=�, t does not 
send any output ).  
 



                                                                     

DEFINITION Synchronizable test sequences:  
Given a pair of transitions t1 and t2 of I, let [pi, 
PO] and [pi', PO'] be their IPs, respectively. t1 
and t2 are said to be synchronizable  if (1) 
pi=pi', or (2) pi'�PO.  A given test sequence is 
said to be synchronizable  if any two subsequent 
transitions of the sequence are synchronizable. 

 
 
Guided by the idea of synchronizable test 
sequences, we modify existing test generation 
methods for FSMs such that the resulting test 
sequences are all synchronizable, using an 
approach similar to the one given in [18].  For 
instance, we give in the following a modified 
transition tour method. 
 
Any graph traversal algorithm such as the one 
given in [19] can be modified to obtain a 
transition tour.  Assume that an algorithm TT  
produces a transition tour; we present in the 
following a procedure for generating 
synchronizable transition tours, by modifying 
the algorithm TT. 
  
Generating synchronizable transition tour: 

Each transition t  to be added to the 
sequence by the algorithm TT  is first 
checked whether it forms a synchronizable 
pair together with the last transition tt  of the 
sequence; that is, assuming the IPs of the 
transitions tt  and t  to be [pi, PO] and [pi', 
PO'], respectively,  check  whether  pi=pi' or 
(2) pi'�PO are true.  If the transitions tt  and 
t  are not synchronizable, a different 
transition from the present state is 
considered.  If no suitable transition exists 
from the present state, the algorithm TT  
backtracks to the previous state, continuing 
the tour from there in a different way.  This 
process continues until all the transitions of 
the machine are covered. 

 
For example, Figure 3b shows a synchronizable 
transition tour for the 2p-FSM shown in Figure 
3a. (Note: In Figure 3, Li and Lo represent the 
input and output alphabets, respectively) 
 

(a)

Input sequence:  

Resulting  
global  
sequence: 

(b)

Figure 3:  (a) An example of a 2p-FSM,  
(b) test sequence. 

Port 1:

Port 2:

0 b b 0 b

a c1 1

                   0, 1, 1, 0

IPs: <1,{1,2}>, <2,{2}>,<2,{1}>,<1,{1}>

tester1 -- port 1 
tester2 -- port 2 
The initial state is A

A

B

t1: 0/<a,b>

t2: 1/<b>

t3: 1/<c>

t4:0/<b>

Li1  = { 0 },   Li2  = {1 }
Lo1  = { b },   Lo2  = { a}

 
 

3. Fault coverage 
 
We investigate in this section the issue of  fault 
coverage in the distributed test architecture.  We 
come out with  a fact that the modified methods 
in the literature cannot ensure the same fault 
coverage as the corresponding original testing 
methods.  For instance the modified transition 
tour cannot detect all output faults for FSMs of 
two distributed ports although a transition tour 
can detect all output faults for the FSMs with 
only one port.  A class of output faults  may 
remain undetected if the modified transition tour 
is applied to an FSM with two ports. 
Unfortunately, none of the former articles on 
generating synchronizable test sequences [18, 9, 
4, 2] had realized such weakened fault coverage. 

 
A.  A class of output faults undetectable by 
synchronizable test sequences: 
 



                                                                     

For FSMs, as we know, the transition tour [15] 
can detect all output faults if no transfer faults 
occur. However, for 2p-FSMs,  a transition tour 
which is even a synchronizable test sequence 
does not necessarily detect all output faults.  For 
example, the 2p-FSM shown in Figure 4(a) is a 
faulty implementation of the 2p-FSM shown in 
Figure 3(a); and it has only output faults.  The 
input sequence "0,1,1,0" is a synchronizable 
transition tour, as described in Figure 3(b).  
When the input sequence "0,1,1,0" is applied to 
the faulty implementation, we obtain the global 
sequence (trace) shown in Figure 4(b).  
Although the global sequence for the original 
2p-FSM is different from the global sequence 
for the faulty one, the difference cannot be seen 
at the two local ports ( Ports 1 and 2) since no 
global clock is assumed in the distributed test 
architecture.  Therefore, a modified transition 
tour does not necessarily detect all output faults 
for 2p-FSMs.  
 

(a)

Input sequence:           0, 1, 1, 0

Resulting global  
sequence: 

(b)

Figure 4: (a) An example of an output-shifting  
fault in a 2p-FSM,  (b) the global, and local traces.
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t1: 0/<a>

t2:  
1/<b>

t3:  
1/<c,b>

t4:0/<b>

 
 
By using similar arguments, it is easy to prove 
that the modified W-method and DS-method 
[18] do not necessarily detect all output and 
transfer faults for 2p-FSMs. 
 
We formalize the class of output faults which 
may remain undetected by the modified 

methods as follows:  For two consecutive 
transitions, say t1 and t2, in a given 
specification S, the faulty implementation I can 
be obtained from S by removing an output from 
one of the two transitions and adding the output 
to the other transition.  We say that this class of 
faults are output-shifting faults.  The machine 
shown in Figure 4(a) has an output-shift fault 
with respect to the machine shown in Figure 
3(a).  
 
We present in the following an outline of 
improved approach which can detect the class 
of output faults:   
 
1: Generate a set of synchronizable test 

sequences, say �, by using the approach given 
in Section 3, with respect to one of the test 
generation methods  for FSMs such as the 
transition tour [15], the W-method [5], and so 
on. 

2:  Find a set of all transition pairs, say , along 
the paths caused by applying the sequences of 
� each pair of which may have an output-
shifting fault which is undetectable using �. 

3: If is empty,  stop.  Otherwise, add a set of 
additional synchronizable test sequences to � 
or concatenate some synchronizable sub-
sequences to the sequences in �,   such that � 
can ensure the absence of output-shifting faults 
in the transition pairs of .  Go to Step 2. 

 
Further detail can be found in [13].   
 
4. Application of the test generation method 

to a quorum-based protocol 
 
To illustrate the method we have taken a 
quorum-based protocol which is used for 
nonblocking of resources and increasing the 
distributed system's availability [8, 3]. We 
generate test sequences for this protocol.  Figure 
5 gives the architecture of a distributed system 
that uses a quorum-based protocol.  The test 
architecture for testing this protocol is shown in 
Figure 6. 
 



                                                                     

Figure 5.  The architecture of the distributed  
          system using quorum-based protocol
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Figure 6.  The test architecture for testing a 
quorum-based protocol
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The basic idea of the protocol is that a majority 
of nodes in the distributed system must agree on 
the commit or abort of a transaction before the 
transaction is committed or aborted. The 
weights which are assigned to the ports are 
usually called votes, since they are used when a 
port "votes" on the commit or abort of a 
transaction.  The basic rules of a quorum-based 
protocol are: 

1. Each port, i, has associated with it a number 
of votes, vi , and  vi  is a positive integer. 

2. Let V indicate the sum of the votes of all 
ports of the distributed system. 

3. A transaction must collect a commit 
quorum Vc before committing. 

4. A transaction must collect an abort quorum 
Va before aborting. 

5. Va + Vc >V 
In practice, one usually assumes Va + Vc =V+1. 
 
We have modeled the IUT as a finite state 
machine and  generated test sequences using the 
proposed method, as described in [13]. 
 
5. Conclusion 
 
Test generation in the context of the distributed 
test architecture is an interesting issue in the 
area of quality assurance of the communication 
networks.  A general distributed test 
architecture, which is a generalized version of 
ISO distributed architecture, has been presented 
in the literature for testing distributed systems 
based on the Open Distributing Processing 
(ODP) Basic Reference Model (BRM).  Based 
on this test architecture, we develop a test 
generation method for systems modeled by 
finite state machines. We have applied this 
method to generate test sequences for a so-
called quorum protocol.   
 
Furthermore, we have investigated the issue of  
fault coverage related to test generation in the 
distributed test architecture.  We point out a fact 
that the methods given in the literature for the 
distributed test architecture, modified from 
certain existing methods, cannot ensure the 
same fault coverage as the corresponding 
original testing methods.  The distributed test 
architecture also gives rise to new problems of 
FSM based diagnosis,  and the diagnosis method 
of FSMs of one port  [7] may be modified for 
np-FSMs by applying the concept of  
synchronizable test sequences. 
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