

TEST GENERATION FOR THE DISTRIBUTED TEST ARCHITECTURE

(Extended abstract)

Gang Luo*, Rachida Dssouli*, Gregor v. Bochmann*,

Pallapa Venkataram** and Abderrazak Ghedamsi*

* Departement d'IRO, Universite de Montreal,
C.P. 6128,Succ.A, Montreal, P.Q., H3C 3J7, Canada
e-mail:luo@iro.umontreal.ca, Fax: (514) 343-5834

** Dept. of Electrical Communication Engineering,

 Indian Institute of Science, Bangalore-560 012, Indian.

1. Introduction and the distributed test

architecture

Protocol testing is an important phase for
ensuring the quality of communication
networks; especially, testing distributed
systems is an interesting issue in protocol
engineering [14, 1, 18].

ISO (International Standardization
Organization) developed the ISO distributed test
architecture for testing layered protocols [10]
(see Figure 1). Furthermore, a general
distributed test architecture where the IUT
(implementation under test) contains several
distributed ports has been studied in [14]; it is
used for testing distributed systems, based on
the Open Distributing Processing (ODP) Basic
Reference Model (BRM) (see Figure 2). In this
architecture, the IUT contains several ports
(i.e., points of control and observation), the
testers cannot communicate or synchronize
with one another unless they communicate
through the IUT; and no global clock is
available in the system. This architecture could
model a test architecture of a communication
network with n accessing nodes, where the
testers reside in these nodes. When n=2, this
general distributed test architecture reduces to

the ISO distributed test architecture. We
develop in the paper a test selection method
with respect to this general distributed test
architecture.

Lower Tester

L

Upper Tester

U

Implementation

IUT

Figure 2.2. Distributed test architecture

PCO 1

PCO 2'
PCO 2

underlying
communication service

 Figure 1. ISO distributed test architecture

 te
st

er
 n

 tester 1

 tester 2

IUT

 port 1

 port 2

 port 3
 p

or
t n

 tester 3

. .
 . .

 .
.

Figure 2. A general distributed test architecture

Usually, in the so-called local test architecture
developed by ISO, the specifications of
communication protocols are first abstracted
into state machines [12], then test cases are
generated from the resulting machines. A
number of methods have been developed to
generate test sequences for finite state machines
(FSMs) [6, 16, 5, 17, 15]. However, they are not
directly applicable to the distributed test
architecture, because of the synchronization
problem (as defined in Section 2) between
distributed testers.

In the distributed test architecture, testing is
relatively difficult because certain problems of
synchronization between the testers may arise
during the application of test sequences [18].
To solve this problem, an approach of test
generation has been developed in [18] by
modifying the existing test generation methods
for FSMs such as the transition tour [15], the
DS-method [11], and the W-method [5], using a
concept of so-called synchronizable test
sequences. Later on, further work has been done
to either study the computation complexity of
generating synchronizable test sequences [4, 2],
or to propose some modification to that concept
[9, 4].

However, these methods are all for the ISO
distributed test architecture where there are only

two ports, not for the general distributed test
architecture where n2. Furthermore, none of
these studies addressed the issue of the fault
coverage provided by their methods.

We present in Section 2 an approach to
generating test sequences for FSMs with n
distributed ports (np-FSMs) where n2, which
is a generalized version of the approach given in
[18]. We also explore in Section 3 the issue of
fault coverage in the distributed test
architecture. In Section 4 we discuss the
application of our method to generating test
sequences for a so-called quorum-based
protocol.

2. An outline of a test generation method

Under the architecture given in Figure 2, the
testers are distributed over several sites, and
they are only synchronized through the
interactions with the implementation. In this
situation, considering two consecutive
transitions t1 and t2 of a given np-FSM I (n2),
one of the testers is said to face a
synchronization problem if this tester did not
take part in the first transition and if the second
transition requires that it sends a message to I.

We now generalize the concept of
synchronizable test sequences given in [18] to
the case of np-FSMs, n2, handling the
synchronization problem of general np-FSMs.
Given a np-FSM I with the ports 1, 2, ..., n, we
require the following concepts for the ease of
presentation.

DEFINITION Interaction ports (IP) of a given
transition [pi, PO]:
Let pi�{1, 2, ..., n} and PO⁄{1,2, ..., n} (n is the
number of ports). [pi, PO] is said to be an
interaction port (IP) of a given transition t if t
receives an input from the port pi and sends to
each port in PO an output (if PO=�, t does not
send any output).

DEFINITION Synchronizable test sequences:
Given a pair of transitions t1 and t2 of I, let [pi,
PO] and [pi', PO'] be their IPs, respectively. t1
and t2 are said to be synchronizable if (1)
pi=pi', or (2) pi'�PO. A given test sequence is
said to be synchronizable if any two subsequent
transitions of the sequence are synchronizable.

Guided by the idea of synchronizable test
sequences, we modify existing test generation
methods for FSMs such that the resulting test
sequences are all synchronizable, using an
approach similar to the one given in [18]. For
instance, we give in the following a modified
transition tour method.

Any graph traversal algorithm such as the one
given in [19] can be modified to obtain a
transition tour. Assume that an algorithm TT
produces a transition tour; we present in the
following a procedure for generating
synchronizable transition tours, by modifying
the algorithm TT.

Generating synchronizable transition tour:

Each transition t to be added to the
sequence by the algorithm TT is first
checked whether it forms a synchronizable
pair together with the last transition tt of the
sequence; that is, assuming the IPs of the
transitions tt and t to be [pi, PO] and [pi',
PO'], respectively, check whether pi=pi' or
(2) pi'�PO are true. If the transitions tt and
t are not synchronizable, a different
transition from the present state is
considered. If no suitable transition exists
from the present state, the algorithm TT
backtracks to the previous state, continuing
the tour from there in a different way. This
process continues until all the transitions of
the machine are covered.

For example, Figure 3b shows a synchronizable
transition tour for the 2p-FSM shown in Figure
3a. (Note: In Figure 3, Li and Lo represent the
input and output alphabets, respectively)

(a)

Input sequence:

Resulting
global
sequence:

(b)

Figure 3: (a) An example of a 2p-FSM,
(b) test sequence.

Port 1:

Port 2:

0 b b 0 b

a c1 1

 0, 1, 1, 0

IPs: <1,{1,2}>, <2,{2}>,<2,{1}>,<1,{1}>

tester1 -- port 1
tester2 -- port 2
The initial state is A

A

B

t1: 0/<a,b>

t2: 1/

t3: 1/<c>

t4:0/

Li1 = { 0 }, Li2 = {1 }
Lo1 = { b }, Lo2 = { a}

3. Fault coverage

We investigate in this section the issue of fault
coverage in the distributed test architecture. We
come out with a fact that the modified methods
in the literature cannot ensure the same fault
coverage as the corresponding original testing
methods. For instance the modified transition
tour cannot detect all output faults for FSMs of
two distributed ports although a transition tour
can detect all output faults for the FSMs with
only one port. A class of output faults may
remain undetected if the modified transition tour
is applied to an FSM with two ports.
Unfortunately, none of the former articles on
generating synchronizable test sequences [18, 9,
4, 2] had realized such weakened fault coverage.

A. A class of output faults undetectable by
synchronizable test sequences:

For FSMs, as we know, the transition tour [15]
can detect all output faults if no transfer faults
occur. However, for 2p-FSMs, a transition tour
which is even a synchronizable test sequence
does not necessarily detect all output faults. For
example, the 2p-FSM shown in Figure 4(a) is a
faulty implementation of the 2p-FSM shown in
Figure 3(a); and it has only output faults. The
input sequence "0,1,1,0" is a synchronizable
transition tour, as described in Figure 3(b).
When the input sequence "0,1,1,0" is applied to
the faulty implementation, we obtain the global
sequence (trace) shown in Figure 4(b).
Although the global sequence for the original
2p-FSM is different from the global sequence
for the faulty one, the difference cannot be seen
at the two local ports (Ports 1 and 2) since no
global clock is assumed in the distributed test
architecture. Therefore, a modified transition
tour does not necessarily detect all output faults
for 2p-FSMs.

(a)

Input sequence: 0, 1, 1, 0

Resulting global
sequence:

(b)

Figure 4: (a) An example of an output-shifting
fault in a 2p-FSM, (b) the global, and local traces.

0 b 0 b
a c1 1

b

A

B

t1: 0/<a>

t2:
1/

t3:
1/<c,b>

t4:0/

By using similar arguments, it is easy to prove
that the modified W-method and DS-method
[18] do not necessarily detect all output and
transfer faults for 2p-FSMs.

We formalize the class of output faults which
may remain undetected by the modified

methods as follows: For two consecutive
transitions, say t1 and t2, in a given
specification S, the faulty implementation I can
be obtained from S by removing an output from
one of the two transitions and adding the output
to the other transition. We say that this class of
faults are output-shifting faults. The machine
shown in Figure 4(a) has an output-shift fault
with respect to the machine shown in Figure
3(a).

We present in the following an outline of
improved approach which can detect the class
of output faults:

1: Generate a set of synchronizable test

sequences, say �, by using the approach given
in Section 3, with respect to one of the test
generation methods for FSMs such as the
transition tour [15], the W-method [5], and so
on.

2: Find a set of all transition pairs, say , along
the paths caused by applying the sequences of
� each pair of which may have an output-
shifting fault which is undetectable using �.

3: If is empty, stop. Otherwise, add a set of
additional synchronizable test sequences to �
or concatenate some synchronizable sub-
sequences to the sequences in �, such that �
can ensure the absence of output-shifting faults
in the transition pairs of . Go to Step 2.

Further detail can be found in [13].

4. Application of the test generation method

to a quorum-based protocol

To illustrate the method we have taken a
quorum-based protocol which is used for
nonblocking of resources and increasing the
distributed system's availability [8, 3]. We
generate test sequences for this protocol. Figure
5 gives the architecture of a distributed system
that uses a quorum-based protocol. The test
architecture for testing this protocol is shown in
Figure 6.

Figure 5. The architecture of the distributed
 system using quorum-based protocol

node 3
no

de
 n

. .
 . .

 .
.

pr
ot

oc
ol

protocol

protocol

protocol

each node uses a quorum-based
 protocol

node 1

network

 tester 1

Figure 6. The test architecture for testing a
quorum-based protocol

 port 1

 tester 2

 port 2

 port 3

 p
or

t n

protocol

IUT
network

 tester 3

 te
st

er
 n

The basic idea of the protocol is that a majority
of nodes in the distributed system must agree on
the commit or abort of a transaction before the
transaction is committed or aborted. The
weights which are assigned to the ports are
usually called votes, since they are used when a
port "votes" on the commit or abort of a
transaction. The basic rules of a quorum-based
protocol are:

1. Each port, i, has associated with it a number
of votes, vi , and vi is a positive integer.

2. Let V indicate the sum of the votes of all
ports of the distributed system.

3. A transaction must collect a commit
quorum Vc before committing.

4. A transaction must collect an abort quorum
Va before aborting.

5. Va + Vc >V
In practice, one usually assumes Va + Vc =V+1.

We have modeled the IUT as a finite state
machine and generated test sequences using the
proposed method, as described in [13].

5. Conclusion

Test generation in the context of the distributed
test architecture is an interesting issue in the
area of quality assurance of the communication
networks. A general distributed test
architecture, which is a generalized version of
ISO distributed architecture, has been presented
in the literature for testing distributed systems
based on the Open Distributing Processing
(ODP) Basic Reference Model (BRM). Based
on this test architecture, we develop a test
generation method for systems modeled by
finite state machines. We have applied this
method to generate test sequences for a so-
called quorum protocol.

Furthermore, we have investigated the issue of
fault coverage related to test generation in the
distributed test architecture. We point out a fact
that the methods given in the literature for the
distributed test architecture, modified from
certain existing methods, cannot ensure the
same fault coverage as the corresponding
original testing methods. The distributed test
architecture also gives rise to new problems of
FSM based diagnosis, and the diagnosis method
of FSMs of one port [7] may be modified for
np-FSMs by applying the concept of
synchronizable test sequences.

Acknowledgment: This work was supported
by the IDACOM-NSERC-CWARC Industrial
Research Chair on Communication Protocols at
the University of Montreal (Canada).

REFERENCES:

[1] G. v. Bochmann, R. Dssouli and J. Zhao, "Trace

Analysis for Conformance and Arbitration Testing",

IEEE Transactions on Software Engineering, Vol.
SE-15, No.11, 1989, pp.1347-1356.

[2] Sylvia Boyd and Hasan Ural, "The Synchronization
Problem in Protocol Testing and Its Complexity",
Information Processing Letters Vol.40, No. 8, (Nov.
1991) pp.131-136.

[3] S. Ceri and G. Pelagatti, Distributed Batabases:
Principles and systems, McGraw-Hill, New York
1984.

[4] Wen-Huei Chen, Ching-sung Lu, Jinn-Tuu Wang, and
Richard-Jinjr Lee, "Constrained Chinese Postman
Problem with Its Application on Synchronizable
Protocol Test Generation", Journal of Information
and Engineering Vol.6, (1990), pp.149-157.

[5] T.S.Chow, "Testing Software Design Modeled by
Finite-State Machines, IEEE Trans. on Software
Eng., Vol. SE-4, No.3, 1978.

[6] S.Fujiwara, Gregor von Bochmann, F.Khendek,
M.Amalou & A.Ghedamsi, "Test Selection Based on
Finite State Models", IEEE Trans. on Software
Engineering, Vol SE-17, No.6, June, 1991, pp.591-
603.

[7] A.Ghedamsi and G.v. Bochmann, "Diagnostic Tests
for Finite State Machines", Distributed Computing
Systems Conf. 92 in Japan.

[8] Maurice Herlihy, "A Quotum-Concensus Replication
Method for Abstract Data Types", ACM Transactions
on Computer Systems, Vol.4, No.1, Feb 1986, pp.32-
53.

[9] Darrell Hubbard, "Deterministic Execution Testing of
FSM-Based Protocols", AT&T Technical Journal,
Vol.69, No.1, 1990, pp.119-128.

[10] ISO/TC97/SC21, OSI conformance Testing
Methodology and Framework - Parts 1- 5, ISO, 1991.

[11] Z. Kohavi, Switching and Finite Automata Theory,
New York: McGraw-hil, 1978.

[12] D.Y. Lee and J.Y. Lee, "A Well-Defined Estelle
Specification for the Automatic Test Generation",
IEEE Transactions on Computers, Vol.40, No.4,
April, 1991, pp.526-542.

[13] Gang Luo, Rachida Dssouli, Gregor v. Bochmann,
Pallapa Venkataram and Abderrazak Ghedamsi,
"Generating Synchronizable Test Sequences Based
on Finite State Machines with Distributed Ports",
submitted for publication.

[14] J. de Meer, V.Heymer, J. Burmeister, R. Hirr and
A.Rennoch, "Distributed Testing", Participants
Proceedings of International Workshop on Protocol
Testing Systems, Oct. 15-17th, 1991, the
Netherlands, pp.IV43--51.

[15] S. Naito and M. Tsunoyama, "Fault Detection for
Sequential Machines by Transition Tours", in Proc.
IEEE Fault Tolerant Comput. Conf., 1981.

[16] Alexandre Petrenko and Nina Yevtushenko, "Test
Suite Generation for a FSM with a Given Type of
Implementation Errors", IFIP 12th International
Symposium on Protocol Specification, Testing, and

Verification, U.S.A.,North-Holland, 1992, pp229-
243.

[17] K.Sabnani & A.T.Dahbura, "A Protocol Test
Generation Procedure", Computer Networks and
ISDN, Vol.15, No.4, 1988, North-Holland, pp.285-
297.

[18] Behcet Sarikaya and Gregor v. Bochmann,
"Synchronization and Specification issues in Protocol
Testing", IEEE Transactions on Communications,
Vol.COM-32, No.4, April 1984, pp.389-395.

[19] R.Tarjan, " Depth-first search and linear graph
algorithms.", SIAM J. Comput., vol.1, no.2, 1972.

